Illustration 1: Find the variance of first n natural numbers.

Solution:

The variance is given by

$$V = \sigma^2 = \frac{1}{n} \left[\sum x_i^2 - \frac{\left(\sum x_i\right)^2}{n} \right]$$

where x_i , i = 1, 2, ..., n are the first n natural numbers.

Now,
$$\sum x_i = 1 + 2 + 3 + ... + n = \frac{n(n+1)}{2}$$

 $\sum x_i^2 = 1^2 + 2^2 + ... + n^2 = \frac{n(n+1)(2n+1)}{6}$
Thus, $V = \frac{1}{n} \left[\frac{1}{6} n(n+1)(2n+1) - \frac{n^2(n+1)^2}{4n} \right]$
 $= \frac{n(n+1)}{24n} \left[4(2n+1) - 6(n+1) \right] = \frac{(n+1)}{24} (2n-2) = \frac{n^2 - 1}{12}$.

Illustration 2: Find the standard deviation of 7 scores 1,2,3,4,5, 6,7.

Solution:

Standard deviation of first n natural numbers is
$$\sqrt{\frac{n^2 - 1}{12}}$$
. For n = 7,

the value =
$$\sqrt{\frac{7^2 - 1}{12}} = \sqrt{4} = 2$$
.

Illustration 3: Find the mean and standard deviation for the following data

Age (years)	25–30	30–35	35-40	40-45	45–50	50–55
No. of	30	23	20	14	10	3
teachers						

Solution:

We have a grouped data. The distance between two successive mid-values of the classes is 5, that is h = 5. We choose

a = 42.5 and $u_i = \frac{x_i - a}{h} = \frac{x_i - 42.5}{5}$.

				,		
Class	Mid value	f _i	Ui	f _i u _i	ui ²	f _i ui ²
-	(Xi)		Y			
25–30	27.5	30	-3	-90	9	270
30–35	32.5	23	-2	-46	4	92
35–40	37.5	20	-1	-20	1	20
40–45	42.5	14	0	0	0	Ο.
45–50	47.5	10	<u>,</u> 1	10	1	10
50-55	52.5	3	2	6	4	12
		100		-140		404

$$\vec{x} = a + h\left(\frac{\sum f_i u_i}{\sum f_i}\right) = 42.5 + 5\left(-\frac{140}{100}\right) = 35.5$$

$$V = \sigma^{2} = \frac{h^{2}}{\sum f_{i}} \left[\sum f_{i} u_{i}^{2} - \frac{\left(\sum f_{i} u_{i}\right)^{2}}{\sum f_{i}} \right] = \frac{25}{100} \left[404 - \frac{\left(-140\right)^{2}}{100} \right] = 52.$$

S.d. = $\sigma = \sqrt{52} \approx 7.21.$

Illustration 4: The scores of 25 students in an intelligence test are given below: 75, 56, 50, 62, 68, 62, 56, 78, 80, 75, 50, 62, 72, 78, 68, 67, 80, 75, 50, 68, 80, 68, 62, 56, 68. Find the mean and standard deviation of the data.

Solution:

We note that the marks are repeated. Hence, the data forms a frequency distribution. Since the numbers are large varying from 50 to 80, we choose the shift value as a = 65. We have following frequency distribution.

Salary	Frequency	d _i = x _i -a	f _i d _i	di ²	f _i d _i ²
Xi	fi	= x ₁ - 65			
50	3	-15	-45	225	675
56	3	-9	-27	81	243
62	4	-3	-12	9	36
67	1	2	2	4	4
68	5	3	15	9	45
72	1	7	7	49	49
75	3	10	30	100	300
78	2	13	26	169	338
80	3	15	45	225	675
	25	23	41		2365

Mean =
$$\overline{x}$$
 = a + \overline{d} = 65 + $\frac{41}{25}$ = 66.64

$$\sigma^{2} = \frac{1}{\sum f_{i}} \left[\sum f_{i} d_{i}^{2} - \frac{\left(\sum f_{i} d_{i}\right)^{2}}{\sum f_{i}} \right] = \frac{1}{25} \left[2365 - \frac{\left(41\right)^{2}}{25} \right] = \frac{57444}{625}$$

and S.d. =
$$\sigma = \frac{\sqrt{57444}}{25} \approx 9.59$$
.

Illustration 5: Find the variance of 2, 4, 6, 8, 10.

Solution:

Variance of 1, 2, 3, 4, 5, is
$$\frac{n^2 - 1}{12} = \frac{5^2 - 1}{12} = 2$$

(: variance of first n natural number is $(n^2 - 1)/12$, when each item is doubled (i.e. 2, 4, 5, 8, 10) variance is multiplied by $2^2 = 4$. Required variance = $4 \times 2 = 8$)

Illustration 6: The standard deviations of two samples of sizes 50 and 100 are 8 and 7 respectively. Find the standard deviation of the combined sample.

Solution: S.D. of combined sample =
$$\sqrt{\frac{n_1\sigma_1^2 + n_2\sigma_2^2}{n_1 + n_2}} = \sqrt{\frac{1}{150}(50 \times 64 + 100 \times 49)} = 7.35$$